Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 113
Filtrar
1.
Nat Rev Genet ; 24(5): 274, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36635408
2.
Am J Hum Genet ; 109(12): 2253-2269, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36413998

RESUMO

Heterozygous pathogenic variants in DNM1 cause developmental and epileptic encephalopathy (DEE) as a result of a dominant-negative mechanism impeding vesicular fission. Thus far, pathogenic variants in DNM1 have been studied with a canonical transcript that includes the alternatively spliced exon 10b. However, after performing RNA sequencing in 39 pediatric brain samples, we find the primary transcript expressed in the brain includes the downstream exon 10a instead. Using this information, we evaluated genotype-phenotype correlations of variants affecting exon 10a and identified a cohort of eleven previously unreported individuals. Eight individuals harbor a recurrent de novo splice site variant, c.1197-8G>A (GenBank: NM_001288739.1), which affects exon 10a and leads to DEE consistent with the classical DNM1 phenotype. We find this splice site variant leads to disease through an unexpected dominant-negative mechanism. Functional testing reveals an in-frame upstream splice acceptor causing insertion of two amino acids predicted to impair oligomerization-dependent activity. This is supported by neuropathological samples showing accumulation of enlarged synaptic vesicles adherent to the plasma membrane consistent with impaired vesicular fission. Two additional individuals with missense variants affecting exon 10a, p.Arg399Trp and p.Gly401Asp, had a similar DEE phenotype. In contrast, one individual with a missense variant affecting exon 10b, p.Pro405Leu, which is less expressed in the brain, had a correspondingly less severe presentation. Thus, we implicate variants affecting exon 10a as causing the severe DEE typically associated with DNM1-related disorders. We highlight the importance of considering relevant isoforms for disease-causing variants as well as the possibility of splice site variants acting through a dominant-negative mechanism.


Assuntos
Encefalopatias , Dinaminas , Síndromes Epilépticas , Humanos , Encefalopatias/genética , Causalidade , Dinaminas/genética , Éxons/genética , Heterozigoto , Mutação/genética , Síndromes Epilépticas/genética
3.
Genet Mol Biol ; 45(3): e20220150, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36218382

RESUMO

Precision Medicine emerges from the genomic paradigm of health and disease. For precise molecular diagnoses of genetic diseases, we must analyze the Whole Exome (WES) or the Whole Genome (WGS). By not needing exon capture, WGS is more powerful to detect single nucleotide variants and copy number variants. In healthy individuals, we can observe monogenic highly penetrant variants, which may be causally responsible for diseases, and also susceptibility variants, associated with common polygenic diseases. But there is the major problem of penetrance. Thus, there is the question of whether it is worthwhile to perform WGS in all healthy individuals as a step towards Precision Medicine. The genetic architecture of disease is consistent with the fact that they are all polygenic. Moreover, ancestry adds another layer of complexity. We are now capable of obtaining Polygenic Risk Scores for all complex diseases using only data from new generation sequencing. Yet, review of available evidence does not at present favor the idea that WGS analyses are sufficiently developed to allow reliable predictions of the risk components for monogenic and polygenic hereditary diseases in healthy individuals. Probably, it is still better for WGS to remain reserved for the diagnosis of pathogenic variants of Mendelian diseases.

4.
Front Genet ; 13: 796759, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35281816

RESUMO

The arthrogryposis, renal dysfunction, and cholestasis syndrome (ARCS) is an autosomal recessive multisystem disease caused by variants in VPS33B or VIPAS39. The classical presentation includes congenital joint contractures, renal tubular dysfunction, cholestasis, and early death. Additional features include ichthyosis, central nervous system malformations, platelet dysfunction, and severe failure to thrive. We studied three patients with cholestasis, increased aminotransferases, normal gamma-glutamyl transferase, and developmental and language delay. Whole exome sequencing analysis identified VPS33B variants in all patients: patients 1 and 2 presented a novel homozygous variant at position c.1148T>A. p.(Ile383Asn), and patient 3 was compound heterozygous for the same c.1148T>A. variant, in addition to the c.940-2A>G. variant. ARCS is compatible with the symptomatology presented by the studied patients. However, most patients that have been described in the literature with ARCS had severe failure to thrive and died in the first 6 months of life. The three patients studied here have a mild ARCS phenotype with prolonged survival. Consequently, we believe that the molecular analysis of the VPS33B and VIPAS39 should be considered in patients with normal gamma-glutamyl transferase cholestasis.

5.
Genet Mol Biol ; 44(2): e20200393, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33877262

RESUMO

Prolidase Deficiency (PD) is an autosomal recessive rare disorder caused by loss or reduction of prolidase enzymatic activity due to variants in the PEPD gene. PD clinical features vary among affected individuals: skin ulcerations, recurrent infections, and developmental delay are common. In this study, we describe a 16-year-old boy with a mild PD phenotype comprising chronic eczema, recurrent infections and elevated IgE. Whole exome sequencing analysis revealed three PEPD variants: c.575T>C p.(Leu192Pro) inherited from the mother, and c.692_694del p.(Tyr231del) and c.1409G>A p.(Arg470His), both inherited from the father. The variant p.(Tyr231del) has been previously characterized by high-resolution X-ray structure analysis as altering protein dynamics/flexibility. In order to study the effects of the other two prolidase variants, we performed site directed mutagenesis purification and crystallization studies. A high-resolution X-ray structure could only be obtained for the p.(Arg470His) variant, which showed no significant structural differences in comparison to WT prolidase. On the other hand, the p.(Leu192Pro) variant led to significant protein destabilization. Hence, we conclude that the maternal p.(Leu192Pro) variant was likely causally associated with the proband´s disease, together with the known pathogenic paternal variant p.(Tyr231del). Our results demonstrated the utility of exome sequencing to perform diagnosis in PD cases with mild phenotype.

6.
Lab Invest ; 101(4): 442-449, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-32989232

RESUMO

Short-read next generation sequencing (NGS) has become the predominant first-line technique used to diagnose patients with rare genetic conditions. Inherent limitations of short-read technology, notably for the detection and characterization of complex insertion-containing variants, are offset by the ability to concurrently screen many disease genes. "Third-generation" long-read sequencers are increasingly being deployed as an orthogonal adjunct technology, but their full potential for molecular genetic diagnosis has yet to be exploited. Here, we describe three diagnostic cases in which pathogenic mobile element insertions were refractory to characterization by short-read sequencing. To validate the accuracy of the long-read technology, we first used Sanger sequencing to confirm the integration sites and derive curated benchmark sequences of the variant-containing alleles. Long-read nanopore sequencing was then performed on locus-specific amplicons. Pairwise comparison between these data and the previously determined benchmark alleles revealed 100% identity of the variant-containing sequences. We demonstrate a number of technical advantages over existing wet-laboratory approaches, including in silico size selection of a mixed pool of amplification products, and the relative ease with which an automated informatics workflow can be established. Our findings add to a growing body of literature describing the diagnostic utility of long-read sequencing.


Assuntos
Análise Mutacional de DNA/métodos , Sequências Repetitivas Dispersas/genética , Mutagênese Insercional/genética , Sequenciamento por Nanoporos/métodos , DNA/análise , DNA/genética , Bases de Dados Genéticas , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Neoplasias/genética
7.
Genet Med ; 23(4): 637-644, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33244166

RESUMO

PURPOSE: Hardikar syndrome (MIM 612726) is a rare multiple congenital anomaly syndrome characterized by facial clefting, pigmentary retinopathy, biliary anomalies, and intestinal malrotation, but with preserved cognition. Only four patients have been reported previously, and none had a molecular diagnosis. Our objective was to identify the genetic basis of Hardikar syndrome (HS) and expand the phenotypic spectrum of this disorder. METHODS: We performed exome sequencing on two previously reported and five unpublished female patients with a clinical diagnosis of HS. X-chromosome inactivation (XCI) studies were also performed. RESULTS: We report clinical features of HS with previously undescribed phenotypes, including a fatal unprovoked intracranial hemorrhage at age 21. We additionally report the discovery of de novo pathogenic nonsense and frameshift variants in MED12 in these seven individuals and evidence of extremely skewed XCI in all patients with informative testing. CONCLUSION: Pathogenic missense variants in the X-chromosome gene MED12 have previously been associated with Opitz-Kaveggia syndrome, Lujan syndrome, Ohdo syndrome, and nonsyndromic intellectual disability, primarily in males. We propose a fifth, female-specific phenotype for MED12, and suggest that nonsense and frameshift loss-of-function MED12 variants in females cause HS. This expands the MED12-associated phenotype in females beyond intellectual disability.


Assuntos
Deficiência Intelectual , Complexo Mediador/genética , Retardo Mental Ligado ao Cromossomo X , Retinite Pigmentosa , Adulto , Colestase , Fissura Palatina , Feminino , Genes Ligados ao Cromossomo X , Humanos , Deficiência Intelectual/genética , Retardo Mental Ligado ao Cromossomo X/genética , Fenótipo , Adulto Jovem
8.
Am J Med Genet C Semin Med Genet ; 184(4): 928-938, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33205899

RESUMO

We review studies from our laboratories using different molecular tools to characterize the Amerindian, European and African ancestry of Brazilians. Initially we used uniparental DNA markers to investigate the contribution of distinct Y chromosome and mitochondrial DNA lineages to present-day populations. High levels of genetic admixture and strong directional mating between European males and Amerindian and African females were unraveled. We next analyzed different types of biparental autosomal polymorphisms. Especially useful was a set of 40 insertion-deletion polymorphisms (indels) that when studied worldwide proved exquisitely sensitive in discriminating between Amerindians, Europeans and Sub-Saharan Africans. When applied to the study of Brazilians these markers confirmed extensive genomic admixture. We then studied ancestry differences in different regions by statistically controlling them to eliminate color considerations. The European ancestry was predominant in all regions studied, with proportions ranging from 60.6% in the Northeast to 77.7% in the South. We propose that the immigration of 6 million Europeans to Brazil in the 19th and 20th centuries is in large part responsible for dissipating previous ancestry dissimilarities that reflected region-specific population histories. Brazilians should be assessed individually, as 210 million human beings, and not as members of specific regions or color groups.


Assuntos
População Negra , População Branca , População Negra/genética , Brasil , DNA Mitocondrial/genética , Feminino , Marcadores Genéticos , Variação Genética , Humanos , Masculino , População Branca/genética
9.
Clin Kidney J ; 11(4): 462-467, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30090628

RESUMO

Little is known about the molecular pathogenesis of congenital nephrotic syndrome in association with primary adrenal insufficiency. Most recently, three groups found concurrently the underlying genetic defect in the gene sphingosine-1-phosphate lyase 1 (SGPL1) and called the disease nephrotic syndrome type 14 (NPHS14). In this report we have performed whole-exome sequencing and identified a new homozygous variant in SGPL1, p.Arg340Trp, in a girl with nephrotic syndrome and Addison's disease. Her brother died previously with the same phenotype and hyperpigmentation of the skin. We reviewed the reported cases and concluded that NPHS14 is a clinically recognizable syndrome. The discovery of this syndrome may contribute to the diagnosis and description of additional patients who could benefit from treatment, genetic counseling and screening for related comorbidities. Until now, patients with congenital nephrotic syndrome associated with primary adrenal insufficiency have been treated as having two different diseases; however, the treatment for patients with NPHS14 should be unique, possibly targeting the sphingolipid metabolism.

11.
NPJ Genom Med ; 2: 7, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29263825

RESUMO

We characterize a novel human cohesinopathy originated from a familial germline mutation of the gene encoding the cohesin subunit STAG2, which we propose to call STAG2-related X-linked Intellectual Deficiency. Five individuals carry a STAG2 p.Ser327Asn (c.980 G > A) variant that perfectly cosegregates with a phenotype of syndromic mental retardation in a characteristic X-linked recessive pattern. Although patient-derived cells did not show overt sister-chromatid cohesion defects, they exhibited altered cell cycle profiles and gene expression patterns that were consistent with cohesin deficiency. The protein level of STAG2 in patient cells was normal. Interestingly, STAG2 S327 is located at a conserved site crucial for binding to SCC1 and cohesin regulators. When expressed in human cells, the STAG2 p.Ser327Asn mutant is defective in binding to SCC1 and other cohesin subunits and regulators. Thus, decreased amount of intact cohesin likely underlies the phenotypes of STAG2-SXLID. Intriguingly, recombinant STAG2 p.Ser327Asn binds normally to SCC1, WAPL, and SGO1 in vitro, suggesting the existence of unknown in vivo mechanisms that regulate the interaction between STAG2 and SCC1.

12.
Brain ; 140(9): 2337-2354, 2017 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-29050392

RESUMO

Recently, de novo mutations in the gene KCNA2, causing either a dominant-negative loss-of-function or a gain-of-function of the voltage-gated K+ channel Kv1.2, were described to cause a new molecular entity within the epileptic encephalopathies. Here, we report a cohort of 23 patients (eight previously described) with epileptic encephalopathy carrying either novel or known KCNA2 mutations, with the aim to detail the clinical phenotype associated with each of them, to characterize the functional effects of the newly identified mutations, and to assess genotype-phenotype associations. We identified five novel and confirmed six known mutations, three of which recurred in three, five and seven patients, respectively. Ten mutations were missense and one was a truncation mutation; de novo occurrence could be shown in 20 patients. Functional studies using a Xenopus oocyte two-microelectrode voltage clamp system revealed mutations with only loss-of-function effects (mostly dominant-negative current amplitude reduction) in eight patients or only gain-of-function effects (hyperpolarizing shift of voltage-dependent activation, increased amplitude) in nine patients. In six patients, the gain-of-function was diminished by an additional loss-of-function (gain-and loss-of-function) due to a hyperpolarizing shift of voltage-dependent activation combined with either decreased amplitudes or an additional hyperpolarizing shift of the inactivation curve. These electrophysiological findings correlated with distinct phenotypic features. The main differences were (i) predominant focal (loss-of-function) versus generalized (gain-of-function) seizures and corresponding epileptic discharges with prominent sleep activation in most cases with loss-of-function mutations; (ii) more severe epilepsy, developmental problems and ataxia, and atrophy of the cerebellum or even the whole brain in about half of the patients with gain-of-function mutations; and (iii) most severe early-onset phenotypes, occasionally with neonatal onset epilepsy and developmental impairment, as well as generalized and focal seizures and EEG abnormalities for patients with gain- and loss-of-function mutations. Our study thus indicates well represented genotype-phenotype associations between three subgroups of patients with KCNA2 encephalopathy according to the electrophysiological features of the mutations.


Assuntos
Encefalopatias/diagnóstico , Encefalopatias/genética , Epilepsia/diagnóstico , Canal de Potássio Kv1.2/genética , Animais , Encefalopatias/complicações , Epilepsia/complicações , Epilepsia/genética , Estudos de Associação Genética , Mutação , Oócitos/fisiologia , Fenótipo , Xenopus
13.
Neurology ; 89(4): 385-394, 2017 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-28667181

RESUMO

OBJECTIVE: To evaluate the phenotypic spectrum caused by mutations in dynamin 1 (DNM1), encoding the presynaptic protein DNM1, and to investigate possible genotype-phenotype correlations and predicted functional consequences based on structural modeling. METHODS: We reviewed phenotypic data of 21 patients (7 previously published) with DNM1 mutations. We compared mutation data to known functional data and undertook biomolecular modeling to assess the effect of the mutations on protein function. RESULTS: We identified 19 patients with de novo mutations in DNM1 and a sibling pair who had an inherited mutation from a mosaic parent. Seven patients (33.3%) carried the recurrent p.Arg237Trp mutation. A common phenotype emerged that included severe to profound intellectual disability and muscular hypotonia in all patients and an epilepsy characterized by infantile spasms in 16 of 21 patients, frequently evolving into Lennox-Gastaut syndrome. Two patients had profound global developmental delay without seizures. In addition, we describe a single patient with normal development before the onset of a catastrophic epilepsy, consistent with febrile infection-related epilepsy syndrome at 4 years. All mutations cluster within the GTPase or middle domains, and structural modeling and existing functional data suggest a dominant-negative effect on DMN1 function. CONCLUSIONS: The phenotypic spectrum of DNM1-related encephalopathy is relatively homogeneous, in contrast to many other genetic epilepsies. Up to one-third of patients carry the recurrent p.Arg237Trp variant, which is now one of the most common recurrent variants in epileptic encephalopathies identified to date. Given the predicted dominant-negative mechanism of this mutation, this variant presents a prime target for therapeutic intervention.


Assuntos
Encefalopatias/genética , Encefalopatias/metabolismo , GTP Fosfo-Hidrolases/genética , GTP Fosfo-Hidrolases/metabolismo , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Mutação , Adolescente , Criança , Pré-Escolar , Estudos de Coortes , Análise Mutacional de DNA , Dinaminas , Feminino , Proteínas de Homeodomínio , Humanos , Lactente , Masculino , Modelos Moleculares , Fenótipo , Proteína de Homoeobox de Baixa Estatura , Irmãos , Vesículas Sinápticas/metabolismo , Adulto Jovem
14.
PLoS Comput Biol ; 13(6): e1005520, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28594829

RESUMO

Whole exome and whole genome sequencing have both become widely adopted methods for investigating and diagnosing human Mendelian disorders. As pangenomic agnostic tests, they are capable of more accurate and agile diagnosis compared to traditional sequencing methods. This article describes new software called Mendel,MD, which combines multiple types of filter options and makes use of regularly updated databases to facilitate exome and genome annotation, the filtering process and the selection of candidate genes and variants for experimental validation and possible diagnosis. This tool offers a user-friendly interface, and leads clinicians through simple steps by limiting the number of candidates to achieve a final diagnosis of a medical genetics case. A useful innovation is the "1-click" method, which enables listing all the relevant variants in genes present at OMIM for perusal by clinicians. Mendel,MD was experimentally validated using clinical cases from the literature and was tested by students at the Universidade Federal de Minas Gerais, at GENE-Núcleo de Genética Médica in Brazil and at the Children's University Hospital in Dublin, Ireland. We show in this article how it can simplify and increase the speed of identifying the culprit mutation in each of the clinical cases that were received for further investigation. Mendel,MD proved to be a reliable web-based tool, being open-source and time efficient for identifying the culprit mutation in different clinical cases of patients with Mendelian Disorders. It is also freely accessible for academic users on the following URL: https://mendelmd.org.


Assuntos
Bases de Dados Genéticas , Doenças Genéticas Inatas , Genômica/métodos , Internet , Software , Doenças Genéticas Inatas/diagnóstico , Doenças Genéticas Inatas/genética , Genoma , Sequenciamento de Nucleotídeos em Larga Escala , Humanos
15.
Mol Biochem Parasitol ; 212: 55-67, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28137628

RESUMO

In recent years, proteasome involvement in the damage response induced by ionizing radiation (IR) became evident. However, whether proteasome plays a direct or indirect role in IR-induced damage response still unclear. Trypanosoma cruzi is a human parasite capable of remarkable high tolerance to IR, suggesting a highly efficient damage response system. Here, we investigate the role of T. cruzi proteasome in the damage response induced by IR. We exposed epimastigotes to high doses of gamma ray and we analyzed the expression and subcellular localization of several components of the ubiquitin-proteasome system. We show that proteasome inhibition increases IR-induced cell growth arrest and proteasome-mediated proteolysis is altered after parasite exposure. We observed nuclear accumulation of 19S and 20S proteasome subunits in response to IR treatments. Intriguingly, the dynamic of 19S particle nuclear accumulation was more similar to the dynamic observed for Rad51 nuclear translocation than the observed for 20S. In the other hand, 20S increase and nuclear translocation could be related with an increase of its regulator PA26 and high levels of proteasome-mediated proteolysis in vitro. The intersection between the opposed peaks of 19S and 20S protein levels was marked by nuclear accumulation of both 20S and 19S together with Ubiquitin, suggesting a role of ubiquitin-proteasome system in the nuclear protein turnover at the time. Our results revealed the importance of proteasome-mediated proteolysis in T. cruzi IR-induced damage response suggesting that proteasome is also involved in T. cruzi IR tolerance. Moreover, our data support the possible direct/signaling role of 19S in DNA damage repair. Based on these results, we speculate that spatial and temporal differences between the 19S particle and 20S proteasome controls proteasome multiple roles in IR damage response.


Assuntos
Complexo de Endopeptidases do Proteassoma/metabolismo , Radiação Ionizante , Trypanosoma cruzi/metabolismo , Trypanosoma cruzi/efeitos da radiação , Ubiquitina/metabolismo , Reparo do DNA , Proteólise , Resposta a Proteínas não Dobradas
16.
Genet Mol Biol ; 39(3): 349-57, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27561113

RESUMO

Deletion-induced hemizygosity may unmask deleterious autosomal recessive variants and be a cause of the phenotypic variability observed in microdeletion syndromes. We performed complete exome sequencing (WES) analysis to examine this possibility in a patient with 1p13.2 microdeletion. Since the patient displayed clinical features suggestive of Noonan Syndrome (NS), we also used WES to rule out the presence of pathogenic variants in any of the genes associated with the different types of NS. We concluded that the clinical findings could be attributed solely to the 1p13.2 haploinsufficiency. Retrospective analysis of other nine reported patients with 1p13.2 microdeletions showed that six of them also presented some characteristics of NS. In all these cases, the deleted segment included the NRAS gene. Gain-of-function mutations of NRAS gene are causally related to NS type 6. Thus, it is conceivable that NRAS haploinsufficiency and gain-of-function mutations may have similar clinical consequences. The same phenomenon has been described for two other genes belonging to the Ras/MAPK pathway: MAP2K2 and SHOC2. In conclusion, we here report genotype-phenotype correlations in patients with chromosome 1p13.2 microdeletions and we propose that NRAS may be a critical gene for the NS characteristics in the patients.

17.
Orphanet J Rare Dis ; 11(1): 76, 2016 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-27282290

RESUMO

Brazil is a country of continental dimensions, with many social inequalities. The latter are reflected on its health system, which comprises a large public component called SUS, a small paid health insurance component and a third very small private component, in which patients pay personally for medical services. Seventy five percent of the population depends on SUS, which thus far does not provide adequate coverage for genetic medical procedures. In 2014, SUS introduced the "Policy for the Integral Attention to Subjects with Rare Diseases", establishing guidelines for offering diagnosis and treatment. The policy defines the two main axes, genetic and non-genetic rare diseases. In this fashion, public genetic services in SUS will be installed and funded not by themselves, but as part of the more general policy of rare diseases. Unfortunately, up to now this policy is still depending on financial allowances to be effectively launched. In this article, our intention was to describe activities developed in the area of inborn errors of metabolism by a Brazilian reference center. In spite of the lack of support of SUS, thousands of Brazilian families affected by rare genetic metabolic disorders, and many health professionals from all regions of Brazil, already have benefited from the services, training programs and research projects provided by this comprehensive center.


Assuntos
Erros Inatos do Metabolismo/epidemiologia , Doenças Raras/epidemiologia , Brasil/epidemiologia , Atenção à Saúde/legislação & jurisprudência , Humanos , Erros Inatos do Metabolismo/genética , Doenças Raras/genética
18.
Epilepsia ; 57(1): e12-7, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26648591

RESUMO

Early onset epileptic encephalopathies (EOEEs) represent a significant diagnostic challenge. Newer genomic approaches have begun to elucidate an increasing number of responsible single genes as well as emerging diagnostic strategies. In this single-center study, we aimed to investigate a cohort of children with unexplained EOEE. We performed whole-exome sequencing (WES), targeting a list of 137 epilepsy-associated genes on 50 children with unexplained EOEE. We characterized all phenotypes in detail and classified children according to known electroclinical syndromes where possible. Infants with previous genetic diagnoses, causative brain malformations, or inborn errors of metabolism were excluded. We identified disease-causing variants in 11 children (22%) in the following genes: STXBP1 (n = 3), KCNB1 (n = 2), KCNT1, SCN1A, SCN2A, GRIN2A, DNM1, and KCNA2. We also identified two further variants (in GRIA3 and CPA6) in two children requiring further investigation. Eleven variants were de novo, and in one paternal testing was not possible. Phenotypes were broadened for some variants identified. This study demonstrates that WES is a clinically useful screening tool for previously investigated unexplained EOEE and allows for reanalysis of data as new genes are being discovered. Detailed phenotyping allows for expansion of specific gene disorders leading to epileptic encephalopathy and emerging sub-phenotypes.


Assuntos
Exoma/fisiologia , Predisposição Genética para Doença/genética , Mutação/genética , Espasmos Infantis/diagnóstico , Espasmos Infantis/genética , Feminino , Estudos de Associação Genética , Humanos , Lactente , Masculino , Fenótipo , Estudos Retrospectivos
19.
Hum Mutat ; 36(9): 823-30, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26037133

RESUMO

Autozygosity mapping is a powerful technique for the identification of rare, autosomal recessive, disease-causing genes. The ease with which this category of disease gene can be identified has greatly increased through the availability of genome-wide SNP genotyping microarrays and subsequently of exome sequencing. Although these methods have simplified the generation of experimental data, its analysis, particularly when disparate data types must be integrated, remains time consuming. Moreover, the huge volume of sequence variant data generated from next generation sequencing experiments opens up the possibility of using these data instead of microarray genotype data to identify disease loci. To allow these two types of data to be used in an integrated fashion, we have developed AgileVCFMapper, a program that performs both the mapping of disease loci by SNP genotyping and the analysis of potentially deleterious variants using exome sequence variant data, in a single step. This method does not require microarray SNP genotype data, although analysis with a combination of microarray and exome genotype data enables more precise delineation of disease loci, due to superior marker density and distribution.


Assuntos
Variação Genética , Genótipo , Sequenciamento de Nucleotídeos em Larga Escala , Polimorfismo de Nucleotídeo Único , Software , Mapeamento Cromossômico/métodos , Biologia Computacional/métodos , Consanguinidade , Exoma , Estudos de Associação Genética , Humanos , Padrões de Herança , Linhagem
20.
Curr Biol ; 24(21): R1035-7, 2014 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-25455029

RESUMO

Understanding the peopling of the Americas remains an important and challenging question. Here, we present (14)C dates, and morphological, isotopic and genomic sequence data from two human skulls from the state of Minas Gerais, Brazil, part of one of the indigenous groups known as 'Botocudos'. We find that their genomic ancestry is Polynesian, with no detectable Native American component. Radiocarbon analysis of the skulls shows that the individuals had died prior to the beginning of the 19th century. Our findings could either represent genomic evidence of Polynesians reaching South America during their Pacific expansion, or European-mediated transport.


Assuntos
Genoma Humano , Índios Sul-Americanos/genética , Havaiano Nativo ou Outro Ilhéu do Pacífico/genética , Brasil , DNA Mitocondrial/genética , Humanos , Datação Radiométrica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...